Search Results

Documents authored by Braginsky, Anastasia


Document
Nova: Safe Off-Heap Memory Allocation and Reclamation

Authors: Ramy Fakhoury, Anastasia Braginsky, Idit Keidar, and Yoav Zuriel

Published in: LIPIcs, Volume 286, 27th International Conference on Principles of Distributed Systems (OPODIS 2023)


Abstract
In recent years, we begin to see Java-based systems embrace off-heap allocation for their big data demands. As of today, these system rely on simple ad-hoc garbage-collection solutions, which restrict the usage of off-heap data. This paper introduces the abstraction of safe off-heap memory allocation and reclamation (SOMAR), a thread-safe memory allocation and reclamation scheme for off-heap data in otherwise managed environments. SOMAR allows multi-threaded Java programs to use off-heap memory seamlessly. To realize this abstraction, we present Nova, Novel Off-heap Versioned Allocator, a lock-free SOMAR implementation. Our experiments show that Nova can be used to store off-heap data in Java data structures with better performance than ones managed by Java’s automatic GC. We further integrate Nova into the open-source Oak concurrent map library, which allows Oak to reclaim keys while the data structure is being accessed.

Cite as

Ramy Fakhoury, Anastasia Braginsky, Idit Keidar, and Yoav Zuriel. Nova: Safe Off-Heap Memory Allocation and Reclamation. In 27th International Conference on Principles of Distributed Systems (OPODIS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 286, pp. 15:1-15:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{fakhoury_et_al:LIPIcs.OPODIS.2023.15,
  author =	{Fakhoury, Ramy and Braginsky, Anastasia and Keidar, Idit and Zuriel, Yoav},
  title =	{{Nova: Safe Off-Heap Memory Allocation and Reclamation}},
  booktitle =	{27th International Conference on Principles of Distributed Systems (OPODIS 2023)},
  pages =	{15:1--15:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-308-9},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{286},
  editor =	{Bessani, Alysson and D\'{e}fago, Xavier and Nakamura, Junya and Wada, Koichi and Yamauchi, Yukiko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2023.15},
  URN =		{urn:nbn:de:0030-drops-195052},
  doi =		{10.4230/LIPIcs.OPODIS.2023.15},
  annote =	{Keywords: memory reclamation, concurrency, performance, off-heap allocation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail